Identifiability and Identification of Switched Linear Biological Systems

Department of Biological Engineering
University of Missouri

Ya Guo and Jinglu Tan
(1) Biological systems often involve complex biochemical reactions that result in high-order kinetics with many unknown parameters.
(2) Experimental observations are often limited. It is common that not all the state variables are continuously measurable, which can incur nonunique solution problems and limit the use of parameter identification algorithms.
(3) Rich perturbations are very important to parameter identification, but there are usually restrictions on executing complex excitation signals.

Research Objective

To analyze the identifiability and identification of a class of switched linear models whose system matrix depends on the input.

$$
\begin{aligned}
& \dot{x}=\mathrm{A}(u) x+\mathrm{B} u, \quad x \in R^{n} \\
& \mathrm{~A}(u) \in R^{n \times n}, \quad \mathrm{~B} \in R^{n \times 1}, \quad u \in R^{1} \\
& u= \begin{cases}u_{0} & 0 \leq t \leq t_{d} \\
0 & t>t_{d}\end{cases}
\end{aligned}
$$

Determination System Eigenvector Matrix

$$
\left.\begin{array}{l}
\mathrm{A}\left(u_{0}\right)=\mathrm{PD}_{1} \mathrm{Q}=\left[\begin{array}{cccc}
p_{11} & p_{12} \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{1} & 0 \cdots 0 \\
0 & \lambda_{1}^{2} \cdots & 0 \\
\vdots & \vdots & \ddots \\
0 & 0 \cdots & \vdots
\end{array}\right]\left[\begin{array}{ccc}
q_{11} & q_{12} \cdots & q_{1 n} \\
q_{21} & q_{22} & \cdots \\
q_{2 n} \\
\vdots & \vdots & \vdots \\
q_{n 1} & q_{n 2} \cdots q_{n n}
\end{array}\right] \\
\mathrm{A}(0)=\mathrm{UD}_{2} \mathrm{~V}=\left[\begin{array}{ccc}
u_{11} & u_{12} \cdots u_{1 n} \\
u_{21} & u_{22} \cdots \cdots u_{2 n} \\
\vdots & \vdots & \ddots \\
u_{n 1} & u_{n 2} & \cdots
\end{array} u_{n n}\right.
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{2}^{1} & 0 \cdots 0 \\
0 & \lambda_{2}^{2} \cdots 0 \\
\vdots & \vdots & \ddots \\
0 & 0 \cdots \lambda_{2}^{n}
\end{array}\right]\left[\begin{array}{ccc}
v_{11} & v_{12} \cdots v_{1 n} \\
v_{21} & v_{22} \cdots v_{2 n} \\
\vdots & \vdots & \vdots \\
v_{n 1} & v_{n 2} \cdots v_{n n}
\end{array}\right] .
$$

System Response during Excitation

$$
\boldsymbol{x}=\int_{0}^{t} e^{A \tau} \mathrm{~B} u(t-\tau) d \tau=\Phi\left[\begin{array}{l}
\frac{1}{\lambda_{1}^{1}} e^{\lambda_{1} \tau} \\
\frac{1}{\lambda_{1}^{2}} e^{\lambda_{1}^{2} \tau} \\
\vdots \\
\frac{1}{\lambda_{1}^{n}} e^{\lambda_{1}^{\tau} \tau}
\end{array}\right]_{0}^{t}
$$

$$
\Phi=\left[\begin{array}{ccc}
p_{11} \sum_{i=1}^{n} q_{1 i}\left(\mathrm{~B} u_{0}\right)_{i} & p_{12} \sum_{i=1}^{n} q_{2 i}\left(\mathrm{~B} u_{0}\right)_{i} \cdots p_{1 n} \sum_{i=1}^{n} q_{n i}\left(\mathrm{~B} u_{0}\right)_{i} \\
p_{21} \sum_{i=1}^{n} q_{1 i}\left(\mathrm{~B} u_{0}\right)_{i} & p_{22} \sum_{i=1}^{n} q_{2 i}\left(\mathrm{~B} u_{0}\right)_{i} \cdots & p_{2 n} \sum_{i=1}^{n} q_{n i}(\mathrm{~B} u)_{i} \\
\vdots & \vdots & \ddots \\
\vdots \\
p_{n 1} \sum_{i=1}^{n} q_{1 i}\left(\mathrm{~B} u_{0}\right)_{i} & p_{n 2} \sum_{i=1}^{n} q_{2 i}\left(\mathrm{~B} u_{0}\right)_{i} \cdots p_{n n} \sum_{i=1}^{n} q_{n i}\left(\mathrm{~B} u_{0}\right)_{i}
\end{array}\right]
$$

\circledast
 System Response following Pulse Excitation

$$
\begin{aligned}
& x_{i}=\left[\varphi_{i} x\left(t_{d}\right)\right]^{T}\left[\begin{array}{l}
e^{\lambda_{2}^{1} t} \\
e^{\lambda_{2}^{2} t} \\
\vdots \\
e^{\lambda_{2}^{n} t}
\end{array}\right]=\left[\Psi_{i}\left[\begin{array}{l}
\frac{1}{\lambda_{1}^{1}} e^{\lambda_{1}^{1} t_{d}}-\frac{1}{\lambda_{1}^{1}} \\
\frac{1}{\lambda_{1}^{2}} e^{\lambda_{1}^{2} t_{d}}-\frac{1}{\lambda_{1}^{2}} \\
\vdots \\
\frac{1}{\lambda_{1}^{n}} e^{\lambda_{1}^{n} t_{d}}-\frac{1}{\lambda_{1}^{n}}
\end{array}\right]\right]^{T}\left[\begin{array}{l}
e^{\lambda_{2}^{1} t} \\
e^{\lambda_{2}^{2} t} \\
\vdots \\
e^{\lambda_{2}^{n} t}
\end{array}\right] \\
& \varphi_{i}=\left(\begin{array}{ccc}
u_{i 1} v_{11} & u_{i 1} v_{12} \cdots u_{i 1} v_{1 n} \\
u_{i 2} v_{21} & u_{i 2} v_{22} & \cdots \\
\vdots & \vdots & \ddots \\
\vdots & \vdots \\
v_{2 n} \\
u_{i n} v_{n 1} & u_{i n} v_{n 2} \cdots & u_{i n} v_{n n}
\end{array}\right) \\
& \Psi_{i}=\left(\begin{array}{ccc}
u_{i 1} \sum_{r=1}^{n} q_{1 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{1 j} v_{j 1} & u_{i 1} \sum_{r=1}^{n} q_{2 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{1 j} v_{j 2} \cdots u_{i 1} \sum_{r=1}^{n} q_{n r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{1 j} v_{j n} \\
u_{i 2} \sum_{r=1}^{n} q_{1 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{2 j} v_{j 1} & u_{i 2} \sum_{r=1}^{n} q_{2 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{2 j} v_{j 2} \cdots u_{i 2} \sum_{r=1}^{n} q_{n r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{2 j} v_{j n} \\
\vdots & \vdots & \ddots
\end{array}\right.
\end{aligned}
$$

Identifiability Analysis

(I) All States Measurable

- Ф can be determined from experimental data from a single pulse excitation. Since each column vector of Φ is just a multiple of the column vector of the P matrix, Φ itself is another eigenvector matrix for $\mathrm{A}\left(u_{0}\right)$. $\mathrm{A}\left(u_{0}\right)$ can thus be uniquely reconstructed.
- $A(0)$ can be determined from a single pulse excitation if at least n data points of all the states are measured after the pulse is turned off.
(II) Partial States Measurable and Recurrent-pulse Excitation
- A common and most limiting case is that only one state variable is measurable.
- By using the Vandermonde determinant, it is easy to verify that $\boldsymbol{x}\left(t_{1}\right), \boldsymbol{x}\left(t_{2}\right) \ldots \boldsymbol{x}\left(t_{n}\right)$ are linearly independent, where $\boldsymbol{x}\left(t_{1}\right)$, $\boldsymbol{x}\left(t_{2}\right) \ldots \boldsymbol{x}\left(t_{n}\right)$ are the state variable values at the end of pulses with durations $t_{1}, t_{2} \ldots t_{n}$, respectively. The measured state variable responses will allow unique determination of the Ψ_{i} matrix, which provides constraints for the eigenvectors for both $\mathrm{A}\left(u_{0}\right)$ and $\mathrm{A}(0)$.
- We refer to the repeated application of pulses as recurrentpulse excitation.

(a) Known A(u_{0})--the whole system is identifiable even if only one state variable is measurable.

(1) For the $j^{\text {th }}$ recurrent pulse excitation, let ξ_{j} denote $\varphi_{i} \boldsymbol{x}\left(t_{j}\right)$ and ξ_{j}
ξ_{j} can be calculated from the $i^{\text {th }}$ measurable state.
(2) Let $\mathrm{X}_{0}=\left[\boldsymbol{x}\left(t_{1}\right), \boldsymbol{x}\left(t_{2}\right), \ldots, \boldsymbol{x}\left(t_{n}\right)\right]$ and $\xi=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right]$, then
$\varphi_{i}=\xi \mathrm{X}_{0}^{-1}$
(3) Since φ_{i} is a right eigenvector matrix for $\mathrm{A}(0), \mathrm{A}(0)$ can be reconstructed as:
$\mathrm{A}(0)=\mathrm{X}_{0} \xi^{-1} \mathrm{D}_{2} \xi \mathrm{X}_{0}^{-1}=\mathrm{X}_{0} \mathrm{M}_{2} \mathrm{X}_{0}^{-1}$
where $M_{2}=\xi^{-1} D_{2} \xi$ |
(b) Known A(0)--the whole system is identifiable even if only one state variable is measurable.

$$
\begin{aligned}
& \text { Let } \mathrm{X}_{0}=\left[\boldsymbol{x}\left(t_{1}\right), \boldsymbol{x}\left(t_{2}\right), \ldots, \boldsymbol{x}\left(t_{n}\right)\right] \text {. } \\
& \Phi=\mathrm{X}_{0} \xi^{-1}
\end{aligned}
$$

Φ is a left eigenvector matrix for $\mathrm{A}\left(u_{0}\right)$

$$
\mathrm{A}\left(u_{0}\right)=\mathrm{X}_{0} \xi^{-1} \mathrm{D}_{1} \xi \mathrm{X}_{0}^{-1}=\mathrm{X}_{0} \mathrm{M}_{1} \mathrm{X}_{0}^{-1}
$$

where $M_{1}=\xi^{-1} D_{1} \xi$.
(c) When none of the matrices are known, a system may still be identifiable if there are sufficient known relationships among the cells of $A\left(u_{0}\right)$ and $A(0)$.

- When there is a linear relationship between $\mathrm{A}\left(u_{0}\right)$ and $\mathrm{A}(0)$, system identifiability boils down to the unique solution of equation $\mathrm{X}_{0}\left(a \mathrm{M}_{1}-b \mathrm{M}_{2}\right)=\mathrm{CX}_{0}$.
- When the relationships are too complex, another iterative least-squares algorithm can be developed.

⒋ Least-squares Algorithm Design for Recurrent-Pulse Excitation

$$
\begin{aligned}
& \dot{\overrightarrow{\boldsymbol{x}}}^{j}=\mathrm{A}\left(u^{j}\right) \overrightarrow{\boldsymbol{x}}^{j}+\mathrm{B} u^{j} \quad \boldsymbol{y}^{j}=\mathrm{C} \overrightarrow{\boldsymbol{x}}^{j} \\
& {\left[\begin{array}{c}
\dot{\overrightarrow{\boldsymbol{x}}}^{1} \\
\dot{\overrightarrow{\boldsymbol{x}}}^{2} \\
\vdots \\
\dot{\overrightarrow{\boldsymbol{x}}}^{n}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{A}\left(u^{1}\right) & \mathrm{O} & \cdots & \mathrm{O} \\
\mathrm{O} & \mathrm{~A}\left(u^{2}\right) & \cdots & \mathrm{O} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{O} & \mathrm{O} & \cdots & \mathrm{~A}\left(u^{n}\right)
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\boldsymbol{X}}^{1} \\
\overrightarrow{\boldsymbol{X}}^{2} \\
\vdots \\
\overrightarrow{\boldsymbol{x}}^{n}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{B} u^{1} \\
\mathrm{~B} u^{2} \\
\vdots \\
\mathrm{~B} u^{n}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\boldsymbol{y}^{1} \\
\boldsymbol{y}^{2} \\
\vdots \\
\boldsymbol{y}^{n}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{C} & \mathrm{O} & \cdots & \mathrm{O} \\
\mathrm{O} & \mathrm{C} & \cdots & \mathrm{O} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{O} & \mathrm{O} & \cdots & \mathrm{C}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\boldsymbol{x}}^{1} \\
\overrightarrow{\boldsymbol{x}}^{2} \\
\vdots \\
\overrightarrow{\boldsymbol{x}}^{n}
\end{array}\right] \quad \begin{array}{c}
\mathbf{Z}=\left[\begin{array}{llll}
\boldsymbol{y}^{1} & \boldsymbol{y}^{2} & \cdots & \boldsymbol{y}^{n}
\end{array}\right]^{T} \\
\boldsymbol{E}=\sum_{r=1}^{s n}\left(\bar{Z}^{r}-Z^{r}\right)^{T}\left(\bar{Z}^{r}-Z^{r}\right)
\end{array}} \\
& \Delta \boldsymbol{k}=\left(\lambda \mathbf{I}+\sum_{r=1}^{s n} \mathbf{J}_{r}^{T} \mathbf{J}_{\mathrm{r}}\right)^{-1} \sum_{r=1}^{s n} \mathbf{J}_{r}^{T}\left(\bar{Z}^{r}-Z^{r}\right) \\
& \boldsymbol{k}=\boldsymbol{k}+\Delta \boldsymbol{k}
\end{aligned}
$$

\cong

An Application of Recurrent-pulse Excitation

$$
\left\{\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{X}_{4} \\
\dot{x}_{5}
\end{array}\right\}=\mathrm{A}\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right\}+\left\{\begin{array}{l}
k_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right\} u \quad y=k_{6} k_{2}\left(x_{1}+x_{3}+x_{5}\right)
$$

$$
\mathrm{A}=-\left[\begin{array}{ccccc}
\left(k_{1} u+k_{2}+k_{3}\right) & \left(k_{1} u-k_{4}\right) & k_{1} u & k_{1} u & \left(k_{1} u-k_{5}\right) \\
-k_{3} & \left(k_{1} u+k_{4}\right) & -k_{2} & 0 & 0 \\
0 & -k_{1} u & \left(k_{2}+k_{3}\right) & -k_{4} & 0 \\
0 & 0 & -k_{3} & \left(k_{1} u+k_{4}+k_{5}\right) & -k_{2} \\
0 & 0 & 0 & -k_{1} u & \left(k_{2}+k_{5}\right)
\end{array}\right]
$$

Real Value $\boldsymbol{K}_{\mathbf{0}}$		26.000	14.000	55.000	44.000	56.000	220.000
Simulatio n2	Start at $\boldsymbol{K}_{\mathbf{0 2}}$	405.284	20.034	45.613	85.346	30.000	883.364
	Converge to $\boldsymbol{K}_{\mathbf{2}}$	240.361	8.688	210.129	433.444	224.866	185.482

Identification with Light On Data:started at $K_{01}=[805.284,40.034,4$ 85.613, 85.346, 30.000, 483.364] and converged to $K_{3}=[48.890$, 19.132, 1692.604, 740.814, 71.553, 211.858]

Recurrent Pulse Excitation

Recurrent Pulses Do Not Add New

Constraints for a Pure Linear System
Pulses of different durations only provide redundant constraints.

$$
\begin{aligned}
& \Psi_{i}=\left(\begin{array}{cccc}
u_{i 1} \sum_{r=1}^{n} q_{1 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{1 j} v_{j 1} & 0 & \cdots & 0 \\
0 & u_{i 2} \sum_{r=1}^{n} q_{2 r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{2 j} v_{j 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{i n} \sum_{i=1}^{n} q_{n r}\left(\mathrm{~B} u_{0}\right)_{r} \sum_{j=1}^{n} p_{n j} v_{j n}
\end{array}\right) \\
& =\left[\begin{array}{cccc}
p_{i 1} \sum_{r=1}^{n} q_{1 r}\left(\mathrm{~B} u_{0}\right)_{r} & 0 & \cdots & 0 \\
0 & p_{i 1} \sum_{r=1}^{n} q_{2 r}\left(\mathrm{~B} u_{0}\right)_{r} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p_{i 1} \sum_{r=1}^{n} q_{n r}\left(\mathrm{~B} u_{0}\right)_{r}
\end{array}\right]
\end{aligned}
$$

Different scenarios of switched linear biological system identifiability were investigated and identification algorithms were developed.

It was found that recurrent-pulse excitation can:

- Avoid long-term effect of excitation and make experiments possible.
- Improve parameter identifiability by providing more constraints.
- Provide data for unmeasurable forced responses.

